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General circulation models (GCM) are increasingly capable of making relevant predictions of
seasonal and long-term climate variability, thus improving prospects of predicting impact on crop
yields. This is particularly important for semi-arid West Africa where climate variability and drought
threaten food security. Translating GCMoutputs into attainable crop yields is difficult because GCM
grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among
runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias
introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of
relevant variation. A detailed case study was conducted using historical weather data for Senegal,
applied to the cropmodel SARRA-H (version for millet). The study was then extended to a 108N–178
N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of
solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon),
generating local rain patterns from grid cell means, was used to restore the variability lost by
aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes
yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased
fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused
significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep,
these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into
a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the
bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of
GCM outputs with plot level crop models can cause large systematic errors due to scale
incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to
simulate the variability found at plot level.
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1. INTRODUCTION
Climate has a strong influence on agricultural pro-

duction, considered as the most weather-dependent of

all human activities (Oram 1989; Hansen 2002), with

socio-economical impacts whose severity varies from

one region to another (Ogallo et al. 2000). These

impacts are particularly strong in developing countries

in the tropics that in many cases are exposed to high

variability in climate like the monsoon system over

West Africa and India and the El Niño–southern

oscillation (ENSO) influence over the American

continent (Challinor et al. 2003), and where poverty

increases the risk and the impact of natural disasters

(UNDP 2004). This is, especially, true in the Sahel
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where rainfed crop production is the main source of

food and income and where means to control the crop

environment are largely unavailable to farmers: irriga-

tion is rarely an option and use of mechanization,

fertilizers and other off-farm inputs are low (Ingram

et al. 2002). In addition, the Sahel is currently affected

by a food deficit crisis resulting from a rapidly growing

population combined with stagnant yields of pearl

millet, the main source of food and income of the

Sahelian people, over the last few decades (De Rouw

2004) leading to a decrease of food production per

capita (World Bank 1997).

The food crisis in the Sahel has been aggravated by

the long-term drought of the last few decades

(Nicholson 1986), and global climate change further

increases the uncertainty of the region’s development

(Bazzaz & Sombroek 1996). Substantial progress has

been made in understanding the variability of rainfall in

West Africa, characterized mainly by both a strong
q 2005 The Royal Society
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inter-annual variability and by periods of long-lasting
droughts, such as the years 1970–1997 (Lebel et al.
2003), by factoring in surface characteristics (Zheng &
Eltahir 1998) and in particular the interactions
between ocean and atmosphere (Folland et al. 1986;
Janicot et al. 2001). Knowledge about the interactions
between the atmosphere and its underlying sea and
land surfaces (Neelin et al. 1998), skills in modelling
the global climate (Palmer et al. in press), and progress
in the measurement of tropical near-surface waters
(McPhaden et al. 1998) now provide a degree of
predictability of climate fluctuations at a seasonal lead
time in many parts of the world (Hansen 2002) by
using comprehensive, coupled models of the atmos-
phere, oceans and land surface (Palmer et al. in press)
or regional statistical schemes (Ward 1998; Fontaine
et al. 1999; Ogallo et al. 2000). There is also
increasingly more proof of climate change based on
observed increases in global surface temperatures
during the twentieth century, and significant inter-
annual climate variability observed in many regions of
the globe (Salinger 1994; Salinger et al. 1997),
especially in tropical latitudes, caused by events such
as the 1982/1983 and 1997/1998 El Niño and the 1991
Mount Pinatubo volcanic eruption (WMO 1995,
1998).

Considering the potential benefits of climate pre-
dictions to agriculture (Sivakumar et al. 2000; Hansen
2002) and the impacts of anthropogenic climate
change on the Sahel, in particular the changing
intensity, frequency and duration of rainy events
(Trenberth et al. 2003), it appears crucial to orient
the research efforts to the linkage between the two fields
of research: meteorology and agriculture. This linkage
was one of the objectives and achievements of the
PROMISE (predictability and variability of monsoons
and agricultural and hydrological impacts) project,
funded by the European Union IV Framework
Environment Programme, with partners from research
in meteorology, hydrology and agriculture (http://
ugamp.nerc.ac.uk/promise/). However, although there
is worldwide agreement on the need for climate
prediction for agriculture (Sivakumar et al. 2000),
and although there has been significant progress in
modelling agricultural and climatic processes and some
of there interactions, the full integration of these two
kinds of models still poses major problems due to the
very different spatial and temporal scales at which
processes happen. Seasonal climate predictions are
made by using coupled or forced general circulation
models (GCMs) to produce monthly or daily weather
on scales with a spatial resolution of 200 km (Challinor
et al. 2003), whereas most crop models simulate the
impact of environmental factors on process rates at the
plot level (Monteith 2000). The issues related to the
linkage between GCMs and crop models fall into two
categories: (i) related to deriving appropriate input
information from GCMs for crop models (e.g. scale
adaptation of data; validation with ground-based
observations that may be unavailable, of poor quality
or heterogeneous; Challinor et al. 2003), and (ii) the
effect of scale per se on the laws that govern processes
relevant to crop behaviour, such as the partitioning of
rainfall into runoff, evaporation, drainage, stock
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replenishment and finally crop transpiration which is
the key to crop productivity; Condon et al. 2004).

The objective of this study is to characterize
potential yield simulation errors arising from disparate
scales when coupling crop models with GCM outputs,
and to explore approaches to resolve these problems.
By using SARRA-H (Dingkuhn et al. 2003; Sultan et al.
2005), a crop model simulating radiation-driven and
water-limited yield, we conduct sensitivity experiments
on the response of simulated, attainable yield of millet
in the Sahel to different aggregation levels of climate
inputs.
2. MATERIAL AND METHODS
The deterministic crop model SARRA-H was applied to

spatially distributed, historical, daily weather records

(1950–1980) for dry areas in West Africa (108N–188N, or

about 1000–300 mm annual rainfall), including the Guinea

savannah, Sudan savannah and Sahel zones.Model sensitivity

experiments were conducted to analyse the response of

attainable (water, temperature and radiation limited) yield of

millet, the most important cereal in the region, to different

aggregation levels of climate inputs.
(a) The crop model SARRA-H

SARRA-H (Dingkuhn et al. 2003; Sultan et al. 2005) is a crop

modelling platform recently developed from SARRA, the

water balance model frequently used by agronomists and

agro-meteorologists in West Africa for zoning and risk

analyses (Affholder 1997; Baron et al. 1999) and yield

forecasting (Samba 1998). The platform serves to assemble

simple crop models from a library of modules and to apply

them with the help of utilities such as sensitivity analysis and

parameter optimization tools, database management and

graphic interfaces. SARRA-H based models typically simu-

late attainable yields deterministically at the field scale (case

of the millet model used here), but may also be stochastic and

operate at variable temporal and spatial scales. Extrapolation

from plot to region is routinely done by Agrhymet (Niamey)

for agro-meteorological forecasting using the DHC system,

which includes the SARRA water balance as central

component (Samba 1998; Samba et al. 2001). The millet

crop model was structured to enable such applications as

well, but with greater physiological detail. Only details

relevant to this particular version are described.
(i) Soil water dynamics

The model simulates at daily increments water runoff using

an empirical threshold of 20 mm (Baron et al. 1996). The

water not running off and not evaporating from the soil

surface is partitioned among storage, deep drainage and

transpiration. The soil is divided into a 20 cm top layer used

to simulate evaporation and a layer of variable thickness

representing the wetted zone. Water holding capacity of

the soil between wilting point (pFZ4.2) and field capacity

(pFZ3.0) is calibrated from available soil data, and was set to

100 mm mK1 for this study to represent a sandy soil. The root

front, which descends at empirical rates depending on the

growth stage, follows the wetting front but is also limited by it.

Water extraction from the soil consists of two additive

components, surface evaporation and extraction from the

root zone through transpiration. Fraction ground cover is

used to partition evaporative demand acting on the soil and

the plant. Ground cover is computed from simulated leaf area

http://ugamp.nerc.ac.uk/promise/
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index (LAI) and an extinction coefficient Kdf according to

Beer–Lamberts’s law (Vose et al. 1995).
(ii) Plant water use and drought simulation

Drought level is evaluated from fraction of transpirable soil

water (FTSW) (Sinclair & Ludlow 1986) calculated for the

bulk root zone, which is the relative degree of soil humidity

between wilting point (FTSWZ0) and field capacity

(FTSWZ1). This variable feeds back as a reducing factor

on plant transpiration using FAO guidelines (P-factor system;

Allen et al. 1998) and on carbon assimilation. Maximum

evapotranspiration of the soil and canopy, achieved when the

canopy is closed due to high LAI, is set with a crop factor Kc

with potential evapotranspiration (PET) according to FAO

guidelines for different crop species (Doorenbos & Pruitt

1977; Doorenbos & Kassam 1979). Intermediate transpira-

tion levels during canopy establishment are a function of

ground cover calculated from LAI.
(iii) Carbon assimilation and partitioning

Potential assimilation rates are calculated from ground cover,

solar radiation and radiation use efficiency (Sinclair &

Muchow 1999) before applying the drought related

reduction. After subtraction of a temperature and biomass-

dependent maintenance respiration term (Penning de Vries

et al. 1989), biomass is partitioned during vegetative stage

between root, stem and leaves according to empirical,

allometric rules (Samba et al. 2001). Grain filling, however,

is simulated with somewhat more detail to allow for variable

harvest index, by determining sink capacity during pre-floral

stages and inducing leaf senescence after flowering when sink

capacity exceeds current assimilation rate. Leaf biomass is

converted to leaf area using specific leaf area (Penning de

Vries et al. 1989; Asch et al. 1999) whose dynamics are

simulated on the basis of a genetic minimum and maximum

value.
(iv) Phenology

Although, the model is capable of simulating variable crop

cycle duration by taking into account photoperiod sensitivity,

a fixed thermal time corresponding to about 90 days was used

in this study to simulate millet, thus corresponding to an

improved cultivar (Morel 1992; Dingkuhn et al. in press).

Thermal time was calculated by assuming a base temperature

of 10 8C (Clerget et al. 2004).
(v) Model calibration and validation

The crop model has been calibrated and validated on several

independent experimental datasets for field grown millet in

Senegal (Sultan et al. 2005). Biomass and grain production,

as well as soil water extraction are simulated satisfactorily

under different water regimes in researcher-managed trials.

Indeed, for the same site at Bambey (Senegal) simulations of

grain yield for three consecutive years and several water

irrigation regimes, including rainfed situations explain almost

90% of the variance of observed grain yield (R2Z0.89; see

Sultan et al. 2005). Simulation of water extraction of the crop

from the soil also corresponded well to observations. These

attainable yields, exceeding 4 tonnes of grain per hectare

under optimal resources, however, are much higher than

average farmers’ yields that are affected by many unknown,

biotic and abiotic factors. Consequently, the model simulates

fairly accurately the (upper) envelope function of farmers’

yields versus water resources, but not the scatter of points

under the envelope (Sultan et al. 2005).
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(b) Onset date and length of the crop cycle

In previous studies (Sultan & Janicot 2003; Sultan et al.

2005), it was demonstrated that the date of monsoon onset in

the Sahel, about 22 June, varies little among years and sites

(11 d standard deviation), as opposed to the large variability

of the onset of the first rains, which can be several weeks to

months earlier (see discussions in §4 of Sultan et al. 2005).

The choice of sowing date is linked to varietal type (early,

variable dates for traditional, photoperiod sensitive materials;

fixed, hydrologically safe dates for materials having constant

duration; Dingkuhn et al. in press). Because we chose a

‘modern’, 90 days varietal type for the simulations, a sowing

date coinciding with the onset of monsoon rains (22 June)

was most appropriate and was applied to the entire study.

This mean date and its inter-annual variability are very similar

to the onset date of the rainy season in northern Nigeria as

defined by the criterion of minimal risk of false starts,

requiring renewed sowing (Ati et al. 2002).

This choice of crop is obviously only one among many

possible agronomic scenarios that need to be considered for

studies on climate impact. More information is also needed

on the spatial variability of onset dates for the rainy season.

Our choice is sufficient, however, for the present purpose of

evaluating bias and loss of information on variability

associated with aggregation of weather variables.
(c) Climate data

Crop simulations were based: (i) on daily rainfall amount at

stations located on the West African domain and (ii) on

synoptic stations measuring several meteorological par-

ameters at 2 m from ground such as global radiation (Rg),

insolation (Ins), surface wind speed (Ws), humidity (maxi-

mum and minimum: Hmax and Hmin) and temperature

(mean, maximum and minimum: Tmean, Tmax and Tmin)

used to compute PET. The extended set of variables is also

needed to simulate the crop’s carbon budget that determines

biomass build-up. These daily data have been compiled by

the regional centre Agrhymet for 1950–1980 for 278 rain

gauges and 86 synoptic stations. The data was used to run 31

year sequences of crop simulations, either for individual

stations using daily inputs (control runs) or for spatially (grid

cell) or temporally (10 d) aggregated data. Spatial aggrega-

tion was done for ensembles of stations falling into a common

grid cell (principle of nearest gridpoint) of the size frequently

used by global circulation models (GCM), e.g. 2.88!2.88

which is a typical grid size from GCM such as ARPEGE--

CLIMAT (Deque et al. 1994). Aggregation analyses were also

conducted for 18!18 grid cells but since results were very

similar to those based on GCM grid cells, they are not

presented here. Although there is a dilemma as to whether

gridpoint output of a GCM represents a point or a spatial

average (Katz 2002), we assume in this study that GCM

outputs look like area-averaged precipitation as GCM output

is intended to represent a grid box. This question of the

interpretation of GCM gridpoint output, crucial for precipi-

tation with high variability on small space and time scales, has

been discussed by Katz (2002) reviewing evidence that GCM

output is somewhere between a point and the entire grid box.
(d) Computations and statistical analysis

Aggregation of weather variables (for either rainfall alone or

for all variables used in PET calculation) was done for

populations of values, either based on spatial entities (GCM

grid cells) or temporal entities (10 day periods). All the

different runs of the study is described in table 1.

A comparison of mathematical means and weighted means
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Figure 1. Spatial distribution of rain gauges in Senegal used to simulate yield variability in a virtual GCM box.

Table 1. Description of the different runs of the study.

meteorological variables (excluding rainfall) rainfall

control run daily observations from synoptic stations daily observations from synoptic stations
EXP1 area-averaged daily observations area-averaged daily observations
EXP2 1950–1980 averaged daily observations daily observations from synoptic stations
EXP3 daily observations from synoptic stations 1950–1980 averaged daily observations
EXP4 10 days averaged observations daily observations from synoptic stations
EXP5 daily observations from synoptic stations 10 days averaged observations
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by krigging of stations falling into a common grid cell (not

presented) gave no significant differences (case study in

Senegal, NZ17; cell shown in figure 1), and we therefore

used simple averages in aggregation exercises.

When comparing yields simulated with non-aggregated

(control run; see table 1) and aggregated (EXP1; see table 1)

agro-meteorological input data, yield differences were eval-

uated using the relative standard error 3sZs23 =s
2
c , where s

2
3 is

the error variance defined as

s
2
3 Z

1

NK1

XN
iZ1

ðeiKciÞ
2;

where ci represents the control run value for the year i and �c the
31 years average (NZ31), and ei the experimental run value

for the year i and s2c is the control run variance defined as:

s2c Z
1

NK1

XN
iZ1

ðciK�cÞ2:

The 3s values are between 0 (the experimental run is similar

to the control run) and CN. The 1 value indicates that the

experimental run reproduces none of the inter-annual

variability of the control run (each value of the experimental

run is equal to the mean result of the 31 control runs).

To quantify the loss of information on yield variability,
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we computed the inverse of the coefficient of determination:

1KR2 (ICD; in percentage). The ICD values are located

between 0 (the variability of the experimental run is similar

that of the control run) and 100% (none of the inter-annual

variability of the control run is reproduced). Statistical

analyses were, generally, conducted with R software (www.r-

project.org).
3. RESULTS AND DISCUSSION
(a) Effect of spatial and temporal aggregations of

weather data on simulated crop yield

In this section, we quantify systematic errors obtained
when using aggregated climate inputs to force the crop
model SARRA-H to simulate annual yield of millet in
Sahel.

(i) Yield predictions using spatially aggregated rainfall data
In order to quantify the bias in yield simulation brought
about by spatially aggregating rainfall, a case study was
conducted in Senegal where 17 rain gauges were
available inside a square (crosses in figure 1) whose
size is similar to a GCM grid box from 178W to 14.28W
and from 12.68N to 15.48N. A smaller box of about 18

http://www.r-project.org
http://www.r-project.org
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Figure 2. (a) Daily rainfall distribution from June to September ( JJAS) during 1950–1980 for the individual 17 stations of
the GCMbox of figure 1 (dotted lines) and for of the 17-station average (solid line). (b) Histogram of rain event frequency for the
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square including 13 stations (not shown) was also

defined to represent an intermediate level of

aggregation.

Figure 2a compares the daily rainfall distribution

within the rainy season ( June to September) for

1950–1980 (dotted lines) with the distribution of the

mean observations for 17 stations (bold line). Since

there is rarely more than one rainfall event contributing

to the daily totals at a given site and date, the non-

averaged distributions are roughly indicative of the size

of individual rainfall events, which in turn strongly

affect the partitioning of precipitation among runoff,

evaporation, drainage and crop transpiration as

simulated by the crop model SARRA-H. Averaged

values for 17 sites distorted distributions by: (i)

underestimating the frequency of rainless days (top

left corner of graph, (ii) overestimating the occurrence

of intermediate rainfall events between 5 and 20 mm

(that would benefit the crop most) and strongly

underestimating the occurrence of events larger than

30 mm (that would lead to high runoff ).

Figure 2b shows the histogram of the probability of

rainy days within the wet season for the 17 stations.

Zero on the horizontal axis indicates the absence of

rains, 0.5 indicates one rainy day in two, and 1.0

indicates rains on every day. Most of the stations are

situated between 0.2 and 0.4, or rains every 5–2.5 days.

The corresponding value for all sites averaged (vertical

line in figure 2b) is 0.9, indicating that within the

observed area it rains almost every day.

Seasonal rainfall characteristics are thus strongly

affected by spatial aggregation. This distortion can not

only be expected for aggregated ground observations,

but also for GCM-based simulations that do not take

into account local rain storms. According to the crop

model, the distortion of rainfall intensity and frequency

distribution brought about by aggregation results in an

overestimation of agronomically effective precipitation,

defined as the fraction of water transpired by the crop

(figure 2c).
In order to evaluate the error caused by rainfall

aggregation when simulating crop yield, the SARRA-H
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model was run with non-aggregated (control run; see
table 1) and averaged rain data (EXP1; see table 1) for
the 17 sites (figure 3). For each point representing one
year out of 31, averaging was thus performed either for
the input variable (daily rainfall) or the output variable
(biomass or grain yield). Both grain yield and crop
biomass were strongly overestimated when averaged
rainfall was used, particularly where yields were low
(figure 3a). Overestimations were in the order of
30–40% between 400 and 700 mm rainfall totals, but
lower for less than 400 and greater than 700 mm.
Thus, the yield bias caused by aggregation was highly
variable.

The overestimation was slightly larger for the 2.88
square as compared to the 18 square (not presented).
The simulation error can been estimated by computing
the relative bias (rb) defined by

rb Z 1�c
1

N

XN
iZ1

ðeiKciÞ

" #
;

where ci represents the control run value for the year i
and �c the 31 years average (NZ31), and ei the
experimental run value for the year i.

Rainfall aggregation on a 28 grid box introduced a
mean overestimation of 26% (rbZ0.26) for biomass at
crop maturity and 28% for grain yield. Overestimations
were only slightly smaller (24% for biomass and 26%
for grain yield) when aggregation was performed on a
18 grid box (sub-sample from the same area, data not
presented).

According to simulations with the crop model, this
bias has three causes.

(i) High daily precipitation (greater than 30 mm)
results in high runoff which is ineffective for
plant growth and unavailable for deep infiltra-
tion of the soil, resulting in a shallow wetting
front and consequently, a shallow root system.

(ii) Intermediate rainfall (10–30 mm dK1) contri-
butes strongly to soil wetting because it causes
little runoff but exceeds evapotranspiration
(ET) significantly.



rainfall total during crop cycle (mm)

300 400 500 600 700 800 900

ra
tio

 s
im

ul
at

ed
 y

ie
ld

 f
or

ag
gr

eg
at

ed
/n

on
-a

gg
re

ga
te

d 
ra

in
s

1.0

1.2

1.4

1.6

2.6

2.8
grain yield
linear regression (n.s.)
above-ground
biomass yield
linear regression (n.s.)

mean crop yield (kgha–1)
simulated for non-aggregated rains

0 4000 8000 12000 16000

m
ea

n 
cr

op
 y

ie
ld

 (
kg

ha
–1

)
si

m
ul

at
ed

 f
or

 a
gg

re
ga

te
d 

ra
in

fa
ll

4000

8000

12000

16000
(a) (b)

grain yield
Y=5757+0.688X
R2=0.61
biomass yield
Y=1265+0.796X
R2=0.60

1 : 1 line

Figure 3. (a) Relationship between annual crop grain yield (filled symbols) and biomass (open) simulated with aggregated
rainfall inputs (vertical axis) and individual inputs for stations (horizontal). Linear regression lines are flanked by 95%
confidence intervals using Sigma Plot v.9 software. (b) Relationship between the yield bias caused by rainfall aggregation
(vertical, derived from data on left graph) and total rainfall during the crop cycle.

2100 C. Baron and others GCM grid cell to agricultural plot: scale issues
(iii) Low rainfall (1–10 mm dK1) is highly effective
for plant growth but contributes little to deep
soil wetting because it is similar to the daily ET.

Since rainfall aggregation increased the apparent
fraction of low to intermediate rainfall, it led to an
overestimation of rainfall efficiency (defined here as the
ratio of transpiration to rainfall). Interestingly, this bias
strongly affected the absolute yield values but only
slightly the relative, inter-annual variability of simu-
lated yields, as indicated by a coefficient of variation
(CV) among 31 years of 29% for spatially aggregated
and 35% for non-aggregated rainfall. Consequently,
the average bias caused by aggregation was similar for
dry and wet years. It, therefore, seems that although for
a given site and year attainable crop yield is extremely
sensitive to intra-seasonal rainfall distribution, its inter-
annual variability is mainly controlled by annual
rainfall totals. Similarly, spatial yield variability
among the 17 sites on the grid unit was correlated
with rainfall totals. This can be explained with the
strong, decreasing trend in annual rainfall totals
observed for all sites during the 31 years considered
in this study (Lebel et al. 2003).

The analysis of the impact of aggregated climate
inputs was extended to the entire semi-arid (Sudan
savannah and Sahel) zone of West Africa for
1950–1980 (figure 4), using 284 weather stations or,
on average, 10.5 weather stations per 2.88 grid unit. As
in figure 2, grain yield simulations were performed
either with averaged climate data for each grid unit
(figure 4a), or with individual stations followed by
averaging simulated yields (figure 4b). The results show
a pronounced north–south gradient in attainable yields
due to the regional distribution of annual rains,
indicating that rainfall is increasingly yield-limiting as
Phil. Trans. R. Soc. B (2005)
the crop is planted further north. The overestimation
brought about by spatial averaging of rainfall is greatest
in the dry areas (148N–178N; sometimes exceeding
40%) but negligible in lower latitudes of the studied
zone. Large overestimations were also observed for the
coastal zones (Senegal and Mauritania).

(ii) Sensitivity of simulated yield to climatic variability
on a north–south gradient and in time
Crop biomass and yield are not only dependent on
rainfall and soil water storage. If we consider only the
effects of climate variables and not those of on-farm
parameters (e.g. mineral inputs and crop protection),
attainable yield is mainly limited by water, energy or
both. In the SARRA-H crop model, intercepted light
energy acts as the engine of growth whereas water
deficit acts as a break on growth. Depending on which
effect is stronger, yield can be pre-dominantly radi-
ation-driven or water-limited. On the north–south
climatic gradient of semi-arid west Africa, the relative
weight of the energy and water terms is likely to change
with latitude. In the following, we evaluate this
latitudinal effect on yield and the probability of
encountering different situations within a GCM grid
box.

Three reference sites on the north–south gradient
were chosen (Bougouni, 11.428N; Bamako, 12.538N;
Niamey, 13.488N). The distance between the southern
and the northern sites is about the length of a GCM
grid box (2.068). In 1950–1980, mean, annual rainfall
totals were highest in Bougouni (1133 mm), inter-
mediate in Bamako (915 mm) lowest in Niamey
(541 mm). For the three stations, two simulation
experiments were performed: (i) the crop model runs
with daily, 31 year, means of meteorological inputs (Rg,
Ins,Ws, Tmean, Tmax, Tmin,Hmax,Hmin) while rainfall is



Table 2. Relative standard error (3s) and the inverse of the coefficient of determination (ICD) between the control run and the
experimental run with 31 years mean daily meteorological inputs (left term) and 31 years mean rainfall inputs (right term) for
three stations: Niamey, Bamako and Bougouni.

Niamey Bamako Bougouni

mean met mean rain mean met mean rain mean met mean rain

3s(%) 30.1 84.4 79.1 79.1 99.3 10.0
ICD (%) 12.2 33.7 64.1 74.8 94.7 3.3
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Figure 4. 1950–1980 mean yield (kg haK1) simulated by (a) aggregating daily rainfall inputs or (b) aggregating yield outputs for
virtual GCM boxes. (c) The ratio between the mean yield of (b) and (a) is presented as a percentage.
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not averaged across years (EXP2; see table 1); and (ii)

the model runs with daily, 31 year, means of rainfall

while meteorological variables are not averaged across

years (EXP3; see table 1). The yield differences to the

control run (no variables are averaged) were evaluated

using the relative standard error 3s, and the ICD was

used to quantify the loss of information on yield

variability brought about by aggregation of model input

data (table 2), as described in §2d.
Figure 5 plots the two experimental runs against the

control run. Results differed markedly among the three

stations. When all meteorological variables except

rainfall were averaged (i) (figure 5a), the inter-annual

yield variability was well reproduced in Niamey, the

driest site, but it almost disappeared in Bougouni with

quasi-constant attainable yield at a high level near the

biological potential of the crop. The value of 3s
increased from north to south (Bougouni) where

about 90% of the inter-annual yield variability escaped

prediction (table 2). At the intermediate site Bamako

this loss of variability was still 60%. The reverse case

(ii), with meteorological variables averaged and rainfall

not, produced opposite results with a 3s decreasing

from north to south. Although, the variability of yield in

Niamey (dry site) remained in part preserved with a

loss of only about 30% (refer to ICD in table 2), 3s was

high because low yield values were systematically
Phil. Trans. R. Soc. B (2005)
overestimated. At the wet site of Bougouni the loss of

inter-annual variability was less than 10%.

These two experiments point out a differential

sensitivity of simulated crop yield depending on

latitude and thus, on annual rainfall. In the semi-arid

zone of Niamey, biomass and yield are mainly

controlled by the seasonal characteristics of the rainfall

as previously reported by Sultan et al. (2005), whereas
attainable yield is insensitive to variability of other agro-

meteorological variables. In the southern zone of

Bougouni, rainfall becomes non-limiting and attainable

yield depends on solar radiation. At the intermediate

location Bamako, yield simulation is sensitive to both

solar radiation and water. This diversity of situations

within the same GCM grid box constitutes a risk of

considerable bias when aggregated climate inputs are

used to predict yield.

The study of the relative effect of water and solar

radiation on attainable yield was extended to the whole

West African domain. Figure 6 shows the modulation

of simulated yield (from the control run) by rainfall and

solar radiation for more than 30 synoptic stations

distributed over the Sahel and savannah zones of West

Africa for 1950–1980.

Plotting attainable grain yield against rainfall totals

for the duration of the crop cycle (figure 6a), a bi-phasic
envelope pattern was obtained consisting of an
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exponential relationship between 0 and 500 mm and a

slightly decreasing plateau for higher rainfall totals.

Beneath this envelope curve (consisting of cases with

good rainfall distribution) there was considerable
scatter (cases of unfavourable distribution; Sultan et al.
Phil. Trans. R. Soc. B (2005)
2005). The slope of the plateau was due to decreasing

solar radiation as rainfall was frequent, a situation

typical of lower latitudes. Plotting attainable grain yield

against cumulative solar radiation (figure 6b), the
envelope curve showed a linear, increasing trend in the
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observed range of 1500–2300 MJ mK2, with much

scatter underneath that was mainly due to insufficient

rain, typical of higher latitudes (figure 5c). For most

stations between 108Nand138Nandmost years, rainfall

exceeded 500 mm per crop cycle, whereas for most

stations north of 158N and most years, rainfall was less

than 500 mm. Figure 6c also shows a strong inter-

annual variability of rainfall between 138N and 158N

with rainfall totals between 100 and 1300 mmper cycle.

Across the spectrum of latitudes, the relative impor-

tance of thewater and energy terms in the determination

of attainable yield was evaluated through the compu-

tation of the coefficient of determination (R2) for the

yield versus rainfall and yield versus solar radiation

linear regression analyses, applied to latitude classes of

18 (figure 6d ). This analysis shows that seasonal rainfall

totals do not explain attainable-yield variations between

108N and 128N while they become the predominant

factor beyond 138N and explain more than 50% of yield

variations at 158N and 178N. Solar radiation totals

explained about 40% of yield variation at 108N and

128N but virtually none beyond 148N. At 138N and

148N, the variability of attainable yield depends on

both solar radiation (R2Z12%) and rainfall totals

(R2Z30%), the R2 of the multiple, linear regression

for both factors is about 46%. Nonlinear regression

analyses would have probably provided greater

R2 values for rainfall effects but our objective here is to

demonstrate the potential diversity of situationswithin a

GCM grid cell, and not necessarily fully quantitative

factor contributions that may be modulated by many

additional, biotic and abiotic factors at farm level.

By using the same three stations on a latitudinal

transect, we also investigated the sensitivity of yield

simulation to temporal aggregation of climate inputs.

Two simulation experiments were performed by: (i)

running the crop model with observed, daily rainfall

and 10 day means of other meteorological variables

(EXP4; see table 1); and (ii) running with 10 day

means of rainfall and daily meteorological variables

(EXP5; see table 1). Statistical analyses were per-

formed as described above.
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Using 10 day means of meteorological variables

(except rainfall) introduced only marginal errors and

virtually no bias (figure 7a). The largest error was

observed for the intermediate station in Bamako

(table 3). Large losses of yield variability were

observed, however, when daily rainfall was averaged

on a 10 day basis, particularly for Bamako and Niamey

(figure 7b). This was associated with a strong bias of

yield prediction as indicated by the slope of the

relationship deviating substantially from 1.

This simulation experiment showed that differential,

site specific sensitivity of simulated yield to climate

variables is associated with differential sensitivity to

temporal aggregation of climate inputs. Thus, a millet

crop grown in a place like Bougouni, will be less

sensitive to temporal aggregation than one grown in

Bamako or Niamey, where rainfall is the limiting factor.

For these two latter sites, sensitivity to 10 day

aggregation of rainfall can be explained by strong

day-to-day variability of rainfall which is smoothed by

the temporal average. The large variability of rainfall

among synoptic stations in the Sahel was documented

by Le Barbé & Lebel (1997) and Lebel et al. (2003) and
attributed to properties of the rain events. These

authors show that the erratic temporal behaviour of

rainfall is linked to their convective origin, mainly

controlled by a succession of convective systems. While

these systems last for more than 24 h and account for

more than 60% of the total cloud cover over the Sahel

(Mathon & Laurent 2001), they generally produce rain

for only a few hours at a given location, due to their

high speed of displacement, and rain periods are

separated by several hours or days with no rainfall

(Lebel et al. 2003). Another synoptic feature modulat-

ing rainfall over the Sahel are the Easterly Waves (Reed

et al. 1977) responsible for two intra-seasonal modu-

lations of both rainfall and atmospheric signals,

propagating westward at 3–5 days and 6–9 days

(Diedhiou et al. 1998, 1999). As for the spatial

aggregation of climate variables (§3a(i)), intra-seaso-
nal, temporal aggregation tends to smooth rainfall

distribution, resulting in less and shorter dry periods



Table 3. Relative standard error (3s) and the inverse of the coefficient of determination (ICD) between the control run and the
experimental run with decadal meteorological inputs (left term) and decadal rainfall inputs (right term) for three stations:
Niamey, Bamako and Bougouni.

Niamey Bamako Bougouni

mean met mean rain mean met mean rain mean met mean rain

3s(%) 3.5 35.4 34.4 71.8 11.3 10.9
ICD (%) 1.5 19.3 28.3 35.0 8.3 5.5
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and fewer extreme values to which crop yield is
sensitive.

(b) Downscaling of aggregate climate

to accommodate crop models

Future forecasting will face critical issues of scale
because GCM outputs will come at different reso-
lutions, and may thus be quite different from the
weather experienced by the crop at the plot level.
Integrated climate–crop modelling systems, therefore,
need to handle appropriately the loss of variability
caused by the difference between scales. This can
potentially be achieved in two different ways: (i) by a
scaling up of crop modelling, as proposed by Challinor
et al. (in press) who designed a cropmodel able to run at
a spatial scale comparable to the resolution of GCMs,
or (ii) by scaling down of GCM outputs by various
dynamic, empirical or statistic–dynamic methods. The
first option (i) is technically simpler but relies on the
possibility to partition rainfall into effective (transpira-
tion) and ineffective fractions in the absence of the
information needed to mechanistically predict parti-
tioning, such as size of rainfall events. This is, generally,
possible on the basis of empirical, region-specific
relationships between rainfall and water available for
crop growth, while assuming that event size distribution
varies little. Such a model would require specific
calibration for different climates and soils. Because of
the strong variability of rainfall in space and time and its
variable weight in determining grain yield in semi-arid
West Africa (Lebel et al. 2003), our focus in this section
will be on option (ii), namely, downscaling of aggregate
climate data. We will use the example of Senegal to
evaluate a statistical downscaling method based on
rainfall event properties and dynamics.

(i) Statistical and dynamic downscaling
While GCMs reproduce the dominant patterns of the
inter-annual variability of the coupled ocean–atmos-
phere system at low resolution, such as the ENSO
phenomenon, they have much lesser skills at higher
spatial resolution (Grotch&MacCracken 1991). Zorita
& Storch (1999) pointed out several causes of the
models’ failure at the regional scale such as: (i) inade-
quate representation of topography and land–sea
distribution, (ii) application of large scale parameteriza-
tion of energy flow to smaller scales, and (iii) inadequate
representation of sub-grid scale processes such as
rainfall, infiltration or runoff. However, sub-grid
processes are strongly linked to human activities that
affect ecology and local climate (Zorita & von Storch
1999). This is especially true in the Sahel where rainfall
is highly variable in space and time due to its convective
Phil. Trans. R. Soc. B (2005)
nature (Guillot & Lebel 1999) and where measure-
ments are scarce (Lebel & Amani 1999). Lebel et al.
(2000) conducted a comparative analysis of the
variability of observed and rainfall predicted by GCM
in semi-arid Africa using the climate model LMD-6
(Polcher &Laval 1994) at a resolution of 1.68 in latitude
and of 3.758 in longitude. They pointed out errors in
predicting the seasonal cycle (wet season too early and
too long) and meso-scale convective systems which are
responsible for 95% of annual rainfall in semi-arid
regions such asNiamey (Laurent et al. 1998). The latter
problem affects strongly the day-to-day distribution of
rainfall.

To accurately represent the impact on agricultural
processes of GCM-derived climate scenarios, down-
scaling techniques are required that enhance large-scale
information with effects and processes characteristic
at small scales (Von Storch 1995). Downscaling
techniques belong to three different groups:

(i) dynamic methods requiring the use of limited-
area models simulating weather at meso-scale
(20–50 km) while taking into account regional
characteristics (such as the MAR model
developed for West Africa by Gallée et al. 2004);

(ii) statistical downscaling using empirical relation-
ships between the large-scale circulation and the
local climate, using stochastic weather genera-
tors (Wilks & Wilby 1999), regression models
(linear methods such as canonical analyses and
nonlinear methods such as neural networks) and
weather models (e.g. clustering and analogue
methods); and

(iii) statistical–dynamic methods that combine
dynamic and empirical methods (Zorita & von
Storch 1999).

The choice of a class of model is often largely
conditioned by the targeted scales. Here, the focus is on
reproducing the convective scale variability from areal
averages available at the typical resolution of a climate
model that performs downscaling from a few hundred
kilometres to a few kilometres. A model developed by
Onibon et al. (2004) was used to that end.
(ii) The Lebel–Guillot–Onibon downscaling model
Using high-resolution data collected in the semi-arid
region of Niamey (Niger), Guillot & Lebel (1999)
proposed a space–time model, allowing the disaggrega-
tion of large-scale estimates derived from satellite
images or GCM outputs. The initial version used
turning band algorithms and was not intended to
perform simulations conditioned on known areal
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Figure 8. (a) Distribution of total rainfall during crop cycle for 17 synoptic stations and 81 virtual stations reconstituted from
GCM grid cell mean. (b) Distribution of grain yield simulated for the same data. (c) Relationship between grain yield and total
rainfall per crop cycle, simulated for 1972 for a 2.88!2.88GCM grid cell (refer to figure 1) with rainfall observed for 17 stations
(closed circles) and reconstituted, virtual stations (open circles).
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characteristics. Onibon et al. (2004) presented a new
version that performs conditional simulations of
precipitation fields in the context of Gaussian trans-
formed functions. This method allows constructing
diverse scenarios of precipitation fields when only a
spatially averaged estimate is known over a given area,
using the coupling of a Gibb’s sampler with an
acceptation–rejection algorithm. The model, which
generates series of spatial patterns for a given area
average, was successfully validated with field obser-
vations in the Niamey area (Onibon et al. 2004).
(iii) Applying the Lebel–Guillot–Onibon model to the
Senegal case study
The direct transposition of the Lebel–Guillot–Onibon
(LGO) model in Senegal raises a question about the
accuracy of its parameters outside the central Sahel
boundaries, although rainfall totals are very similar.
The model builds on knowledge on Sahelian meso-
scale convective systems, based on 13 years of EPSAT-
Niger ground measurements (Lebel et al. 1992). No
such high-resolution measurements are available in the
Senegal and we, therefore, used daily rainfall data
instead of rain event data, and assumed that the same
covariance parameters and rainfall characteristics apply
(see Guillot & Lebel 1999 for values). The case study
boxes in Senegal include no coastal areas to avoid ocean
influence, but the ratio of meso-scale convective
systems and local oceanic systems is unknown. The
present study is, therefore, of preliminary nature,
aiming to provide proof of concept but not a final
solution to downscaling.
(iv) Realistic yields
The simulations presented here use 1972 as
example. For each day of the year where rainfall
was recorded anywhere in the grid boxes shown in
figure 1, disaggregated precipitation fields are
established on a grid of virtual weather stations,
either for the larger GCM grid box or for the 18!18
grid box using the Lebel–Guillot–Onibon (LGO)
model. Results seem encouraging (figure 8). The
spatial variability, observed at the pixel scale, is well
restored by the disaggregated precipitation fields and
Phil. Trans. R. Soc. B (2005)
the LGO model offers a large spectrum of spatial
patterns for a single area average, allowing different
crop scenarios. As regards yield simulations, they are
realistic compared to those simulated with the
measured rainfall data.

The LGO model seems to be a useful way to
overcome the scale gap between GCM outputs and
agronomic crop models operating at the plot level. In
order to develop a fully operational, coupled modelling
system, however, the LGO model must be validated
and if necessary recalibrated for the areas targeted, and
its coupled execution with the crop model automated.
On this basis, low resolution GCM outputs can be
directly translated into agronomic impact parameters
without bias resulting from scale gaps.
(c) Implications for impact predictions

of climate change

The results indicate that the bias in crop yield
prediction attributable to insufficient resolution of
agro-meteorological data is much greater for rainfall
than for the other meteorological variables, and
consequently, much greater in water-limited than
radiation-limited environments. Consequently, if this
bias is not taken into account, the negative agricultural
impact of drought would be underestimated at an
economically important scale (10–50%), considering
that mean yield increases in the order of 5% achieved
with improved varieties or cultural practices are
considered as major. This bias can be avoided by
down-scaling techniques such as the disaggregation
methodology presented here (which is tedious because
it greatly increases the number of simulations and
requires climate specific calibration of the down-scaling
model), or empirical coefficients for bias compensation
(which reduces the genericity of the model). Empirical
techniques may in some cases be more practical and
sufficiently robust (Challinor et al. 2003, 2004)
because, as our results indicate, the systematic error
coming from aggregation can be large in absolute
terms, but is much smaller in terms of inter-annual
variability. However, attention must be given to the fact
that 2.88!2.88 grid cells are large enough to mask
significant climatic gradients.
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With respect to the objective of predicting agricul-
tural impact, climate modellers should not be satisfied
with accurately predicting general trends of annual or
seasonal rainfall totals and radiation means (already a
remarkable achievement), but should also consider
their intra-seasonal distribution. If it is unrealistic to
expect GCM simulations to descend to the scale of
local rainstorms, supplemental models are needed to
derive local patterns from larger scale dynamics in a
generic approach. The issue is, of course, not to
predict a particular rain event, but to accurately
represent system behaviour at the relevant spatial and
temporal scales on a probabilistic basis. A typology of
intra-seasonal patterns of rainfall distribution in the
Niamey area has been developed and applied to the
SARRA-H crop model in a precursor study (Sultan
et al. 2005).

The present study on scale effects on crop yield
simulation is preliminary in the sense that it considered
only a specific crop and varietal type (photoperiod
insensitive, short duration millet). Different results can
be expected when using a crop with greater phenolo-
gical plasticity, providing greater flexibility in sowing
date and lower (but more stable) yields (Dingkuhn et al.
in press). We also focused primarily on effects of rainfall
and solar radiation because these variables are respon-
sible for attainable-yield limitations on north–south
gradients in West Africa. Temperature is another agro-
meteorological factor that has strong impacts on yield
in the tropics, particularly through effects on crop
duration (thus limiting biomass build-up) and main-
tenance respiration (limiting the yield ceiling) (Penning
de Vries et al. 1989). These effects, accounted for by
SARRA-H, are small for a crop like millet mainly
grown in water-limited environments but strongly
affect crops grown in warm, low-radiation environ-
ments such as rice. High air temperatures can shorten
crop duration considerably below the agronomic
optimum but the development of varieties having
appropriate duration under such conditions is a
relatively easy task for breeders. By contrast, detri-
mental effects on rice yields of rising nocturnal
temperatures, as observed recently in southeast Asia
and chiefly attributed to crop respiration (Peng et al.
2004), are more difficult to correct and need to be
taken into account in future impact studies. For
temperature effects, spatial resolution of data may be
less of a problem than temporal resolution, because
temperature related processes in crops are very
sensitive to diurnal T amplitudes (Dingkuhn et al.
1995).

Lastly, this study did not take into account carbon
dioxide levels in the atmosphere because the focus was
on historical climate date, and because millet, having a
C4-type metabolism, is comparatively insensitive to this
parameter (Wolfe 1994). It is also unlikely that carbon
dioxide concentrations will show variability sensitive to
aggregation.
4. CONCLUSION
This study evaluated the bias and loss of variability in
crop yield simulation at the plot scale, brought about by
aggregating weather variables used as model inputs in
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space or time. This is a problem to be considered when

forcing crops models with GCM outputs on large grid

cells. Blending small precipitation fields into much

larger grid cells alters the size distribution of rain events

and thus changes the proportion of runoff, drainage,

crop transpiration, soil evaporation and storage. In

particular, the over-representation of small and mid

size events through aggregation increases the crop

transpiration term in the water balance, resulting in an

overestimation of yield. Rainfall was much more

sensitive to aggregation than were other meteorological

variables like solar radiation, temperature and air

humidity, and consequently, yield overestimations

were greatest in the most water-limited environments.

The bias can be corrected by reintroducing micro-

variability of precipitation by disaggregating GCM

pixels into populations of virtual stations.

Currently available tools and approaches to generate

plot-scale size distribution and frequency of rainfall

events for large grid cells are insufficiently available and

operational for routine impact predictions. Their

development would be more important for water

limited than for humid environments where the main

yield limiting factor is solar radiation, a variable that is

less sensitive to aggregation than rainfall.

This study was supported by the European Community
research projects PROMISE and AMMA.
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